Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.573
Filtrar
1.
Molecules ; 29(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474630

RESUMO

Despite many years of research, human neutrophil elastase (HNE) still remains an area of interest for many researchers. This multifunctional representative of neutrophil serine proteases is one of the most destructive enzymes found in the human body which can degrade most of the extracellular matrix. Overexpression or dysregulation of HNE may lead to the development of several inflammatory diseases. Previously, we presented the HNE inhibitor with kinact/KI value over 2,000,000 [M-1s-1]. In order to optimize its structure, over 100 novel tripeptidyl derivatives of α-aminoalkylphosphonate diaryl esters were synthesized, and their activity toward HNE was checked. To confirm the selectivity of the resultant compounds, several of the most active were additionally checked against the two other neutrophil proteases: proteinase 3 and cathepsin G. The developed modifications allowed us to obtain a compound with significantly increased inhibitory activity against human neutrophil elastase with high selectivity toward cathepsin G, but none toward proteinase 3.


Assuntos
Elastase de Leucócito , Serina Proteases , Humanos , Elastase de Leucócito/metabolismo , Catepsina G , Mieloblastina/química , Inibidores de Serino Proteinase/farmacologia
2.
Physiol Res ; 73(1): 91-104, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466008

RESUMO

The objective of this study was to evaluate whether RSV inhibits neutrophil extracellular traps (NETs) that induce joint hyperalgesia in C57BL/6 mice after adjuvant-induced arthritis. A subplantar injection of Freund's complete adjuvant was administered to C57BL/6 mice on day 0 for immunization in the AIA model. Resveratrol (RSV, 25 mg/kg) was administered intraperitoneally once daily starting on day 22 and continuing for two weeks. The effects of mechanical hyperalgesia and edema formation have been assessed in addition to histopathological scoring. Mice were sacrificed on day 35 to determine cytokine levels and PADI4 and COX-2 expression levels. ELISA was used to quantify neutrophil extracellular traps (NETs) along with neutrophil elastase-DNA and myeloperoxidase-DNA complexes in neutrophils. An immunohistochemical stain was performed on knee joints to determine the presence of nuclear factor kappa B p65 (NF-kappaB p65). AIA mice were found to have higher levels of NET in joints and their joint cells demonstrated an increased expression of the PADI4 gene. Treatment with RSV in AIA mice (25 mg/kg, i.p.) significantly (P<0.05) inhibited joint hyperalgesia, resulting in a significant increase in mechanical threshold, a decrease in articular edema, a decrease in the production of inflammatory cytokines, increased COX-2 expression, and a decrease in the immunostaining of NF-kappaB. Furthermore, treatment with RSV significantly reduced the amount of neutrophil elastase (NE)-DNA and MPO-DNA complexes, which were used as indicators of NET formation (P<0.05). This study indicates that RSV reduces NET production and hyperalgesia by reducing inflammation mediated by PADI4 and COX-2. According to these data, NETs contribute to joint pain and resveratrol can be used to treat pain in RA through this pathway.


Assuntos
Artrite Reumatoide , Armadilhas Extracelulares , Camundongos , Animais , Armadilhas Extracelulares/metabolismo , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Resveratrol/metabolismo , Elastase de Leucócito/metabolismo , Elastase de Leucócito/farmacologia , Receptor 4 Toll-Like/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , NF-kappa B/metabolismo , Ciclo-Oxigenase 2 , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Artrite Reumatoide/metabolismo , Neutrófilos/metabolismo , Citocinas/metabolismo , DNA/metabolismo , Edema/metabolismo
3.
J Biol Chem ; 300(1): 105519, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042488

RESUMO

Corticosteroid-binding globulin (CBG) delivers anti-inflammatory cortisol to inflamed tissues through proteolysis of an exposed reactive center loop (RCL) by neutrophil elastase (NE). We previously demonstrated that RCL-localized Asn347-linked N-glycans impact NE proteolysis, but a comprehensive structure-function characterization of the RCL glycosylation is still required to better understand CBG glycobiology. Herein, we first performed RCL-centric glycoprofiling of serum-derived CBG to elucidate the Asn347-glycans and then used molecular dynamics simulations to study their impact on NE proteolysis. Importantly, we also identified O-glycosylation (di/sialyl T) across four RCL sites (Thr338/Thr342/Thr345/Ser350) of serum CBG close to the NE-targeted Val344-Thr345 cleavage site. A restricted N- and O-glycan co-occurrence pattern on the RCL involving exclusively Asn347 and Thr338 glycosylation was experimentally observed and supported in silico by modeling of a CBG-GalNAc-transferase (GalNAc-T) complex with various RCL glycans. GalNAc-T2 and GalNAc-T3 abundantly expressed by liver and gall bladder, respectively, showed in vitro a capacity to transfer GalNAc (Tn) to multiple RCL sites suggesting their involvement in RCL O-glycosylation. Recombinant CBG was then used to determine roles of RCL O-glycosylation through longitudinal NE-centric proteolysis experiments, which demonstrated that both sialoglycans (disialyl T) and asialoglycans (T) decorating Thr345 inhibit NE proteolysis. Synthetic RCL O-glycopeptides expanded on these findings by showing that Thr345-Tn and Thr342-Tn confer strong and moderate protection against NE cleavage, respectively. Molecular dynamics substantiated that short Thr345-linked O-glycans abrogate NE interactions. In conclusion, we report on biologically relevant CBG RCL glycosylation events, which improve our understanding of mechanisms governing cortisol delivery to inflamed tissues.


Assuntos
Elastase de Leucócito , Transcortina , Glicosilação , Hidrocortisona/metabolismo , Elastase de Leucócito/metabolismo , Polissacarídeos , Proteólise , Transcortina/genética , Transcortina/química , Transcortina/metabolismo , Humanos
4.
Fundam Clin Pharmacol ; 38(1): 13-32, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37609718

RESUMO

BACKGROUND: Human neutrophil elastase is a multifunctional protease enzyme whose function is to break the bonds of proteins and degrade them to polypeptides or amino acids. In addition, it plays an essential role in the immune mechanism against bacterial infections and represents a key mediator in tissue remodeling and inflammation. However, when the extracellular release of this enzyme is dysregulated in response to low levels of its physiological inhibitors, it ultimately leads to the degradation of proteins, in particular elastin, as well as other components of the extracellular matrix, producing injury to epithelial cells, which can promote sustained inflammation and affect the innate immune system, and, therefore, be the basis for the development of severe inflammatory diseases, especially those associated with the cardiopulmonary system. OBJECTIVE: This review aims to provide an update on the elastase inhibitory properties of several molecules, either synthetic or biological sources, as well as their classification and relevance in related pathologies since a clear understanding of the function of these molecules with the inhibitory capacity of this protease can provide valuable information for the development of pharmacological therapies that manage to modify the prognosis and survival of various inflammatory diseases. METHODS: Collected data from scientific databases, including PubMed, Google Scholar, Science Direct, Nature, Wiley, Scopus, and Scielo. Articles published in any country and language were included. RESULTS: We reviewed and included 132 articles conceptualizing neutrophil elastase activity and known inhibitors. CONCLUSION: Understanding the mechanism of action of elastase inhibitors based on particular aspects such as their kinetic behavior, structure-function relationship, chemical properties, origin, pharmacodynamics, and experimental progress has allowed for a broad classification of HNE inhibitors.


Assuntos
Inflamação , Elastase de Leucócito , Humanos , Elastase de Leucócito/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/farmacologia , Neutrófilos/metabolismo
5.
Chem Biol Drug Des ; 103(1): e14406, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38065687

RESUMO

Botulinum toxin type A (BoNT/A) has exhibited efficacy in postherpetic neuralgia (PHN) treatment, and this study aims to uncover its underlying mechanisms. Resiniferatoxin (RTX)-induced PHN rats were given BoNT/A. Rat postoperative pain behaviors were assessed by Von Frey test. Cleaved-synaptosomal protein 25 kDa (cl-SNAP-25) or cathelicidin antimicrobial peptide (CAMP) expression in rat dorsal root ganglia (DRG) was detected by immunofluorescence or immunohistochemistry. Healthy rat-derived DRG neurons were transfected, incubated with lipopolysaccharides (LPS)/adenosine 5'-triphosphate (ATP) to stimulate pyroptosis and treated with BoNT/A. The CCK-8, Western blot, ELISA, and qRT-PCR were used to assess the viability, levels of pyroptosis-related proteins proinflammatory cytokine levels, as well as CAMP and ELANE mRNA levels. BoNT/A (30 U/kg) promoted cl-SNAP-25 expression in rat DRG and reversed RTX-induced decrease of rat paw withdrawal thresholds and CAMP expression and increase of pyroptosis-associated protein and inflammatory factor expression in rat DRG. CAMP interacted with ELANE in rat DRG neurons. BoNT/A attenuated LPS/ATP-stimulated inhibition of viability and CAMP expression and upregulation of inflammatory mediators, pyroptosis-related proteins, and ELANE expression in rat DRG neurons, which was counteracted by CAMP silencing. However, ELANE knockdown offset the effect of CAMP silencing in LPS/ATP/BoNT/A-treated rat DRG neurons. On the whole, BoNT/A alleviates rat DRG neuron pyroptosis during PHN by upregulating CAMP to inhibit ELANE.


Assuntos
Toxinas Botulínicas Tipo A , Neuralgia Pós-Herpética , Ratos , Animais , Toxinas Botulínicas Tipo A/farmacologia , Toxinas Botulínicas Tipo A/metabolismo , Neuralgia Pós-Herpética/metabolismo , Catelicidinas/metabolismo , Catelicidinas/farmacologia , Elastase de Leucócito/metabolismo , Elastase de Leucócito/farmacologia , Gânglios Espinais/metabolismo , Lipopolissacarídeos/farmacologia , Piroptose , Neurônios , Trifosfato de Adenosina/metabolismo
6.
Ecotoxicol Environ Saf ; 268: 115694, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984289

RESUMO

Lead (Pb) is a pervasive toxic metal contaminant associated with a high risk of myocardial injury. However, the precise mechanism underlying Pb-induced myocardial injury has yet to be fully elucidated. In this study, a murine model of Pb exposure (0, 1, 5, and 10 mg/kg) was employed to investigate the involvement of neutrophil degranulation in the induction of myocardial injury. Notably, serum levels of cardiac troponin I (cTnI) and creatine kinase-MB (CK-MB) increased significantly in Pb-exposed mice, whereas cTnI levels in cardiomyocytes decreased, suggesting that Pb exposure may cause early myocardial injury. Moreover, Pb exposure was found to promote neutrophil degranulation, as evidenced by elevated myeloperoxidase (MPO) and neutrophil elastase (NE) concentrations in both the serum of Pb-exposed workers and Pb-exposed mice, as well as the extracellular supernatant of neutrophils following exposure. However, we found that serum level of cTnI enhanced by Pb exposure is associated with increased NE levels in the serum, but not with MPO levels. Upon treatment with NE inhibitor (sivelestat), the serum level of cTnI markedly reduced in Pb-exposed mice, we found that early myocardial injury is associated with NE levels in the serum. At the molecular level, western blotting analysis revealed an upregulation of ERK1/2 expression in vitro following Pb exposure, suggesting that the activation of the ERK1/2 signaling pathway may underlie the participation of neutrophil degranulation in Pb-induced myocardial injury. In summary, our findings demonstrate that Pb exposure can initiate early myocardial injury by promoting the neutrophil degranulation process, thereby highlighting the potential role of this process in the pathogenesis of Pb-associated myocardial injury.


Assuntos
Chumbo , Neutrófilos , Camundongos , Animais , Neutrófilos/metabolismo , Chumbo/toxicidade , Miócitos Cardíacos/metabolismo , Elastase de Leucócito/metabolismo
7.
Clin Transl Sci ; 16(12): 2765-2778, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926919

RESUMO

Neutrophil elastase (NE), a major inflammatory mediator in chronic obstructive pulmonary disease (COPD) airways, impairs macrophage function, contributing to persistence of airway inflammation. We hypothesized that NE activates a novel mechanism of macrophage-induced inflammation: release of macrophage extracellular traps (METs). The METs are composed of extracellular DNA decorated with granule proteinases and oxidants and may trigger persistent airway inflammation in COPD. To test the hypothesis, human blood monocytes were isolated from whole blood of subjects with COPD recruited following informed written consent. Patient demographics and clinical data were collected. Cells were cultured in media with GM-CSF to differentiate into blood monocyte derived macrophages (BMDMs). The BMDMs were treated with FITC-NE and unlabeled NE to determine intracellular localization by confocal microscopy and intracellular proteinase activity by DQ-Elastin assay. After NE exposure, released extracellular traps were quantified by abundance of extracellular DNA in conditioned media using the Pico Green assay. BMDM cell lysates were analyzed by Western analysis for proteolytic degradation of histone H3 or H4 or upregulation of peptidyl arginine deiminase (PAD) 2 and 4, two potential mechanisms to mediate extracellular trap DNA release. We observed that NE was taken up by COPD BMDM, localized to the cytosol and nucleus, and retained proteinase activity in the cell. NE induced MET release at doses as low as 50 nM. NE treatment caused histone H3 clipping but no effect on histone H4 nor PAD 2 or 4 abundance or activity. In summary, NE activated COPD MET release by clipping histone H3, a prerequisite for chromatin decondensation.


Assuntos
Armadilhas Extracelulares , Elastase de Leucócito , Doença Pulmonar Obstrutiva Crônica , Humanos , DNA , Armadilhas Extracelulares/metabolismo , Histonas/metabolismo , Histonas/farmacologia , Inflamação/metabolismo , Elastase de Leucócito/genética , Elastase de Leucócito/metabolismo , Elastase de Leucócito/farmacologia , Macrófagos/metabolismo , Neutrófilos , Doença Pulmonar Obstrutiva Crônica/metabolismo
8.
Shock ; 60(5): 664-670, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695643

RESUMO

ABSTRACT: Background: Ischemia-reperfusion after cardiac arrest (CA) activates peptidyl arginine deiminase and citrullinated histone H3 (CitH3), which leads to the formation of neutrophil extracellular traps (NETs). This study attempted to determine the alterations in NET components in post-CA patients as well as analyze the association of NETs with 28-day all-cause mortality. Methods : In this study, 95 patients with restoration of spontaneous circulation (ROSC) after CA were included. They were categorized into the survivor group (n = 32) and the nonsurvivor group (n = 63) according to their 28-day survival statuses. The control group comprised 20 healthy individuals. The blood samples were collected from the patients on days 1, 3, and 7 after ROSC and from the control subjects at the time of enrollment. The serum cell-free DNA (cfDNA) level was determined using the fluorescent labeling method, and the serum concentrations of NET components, including CitH3, myeloperoxidase, neutrophil elastase, and nucleosomes, were estimated using the enzyme-linked immunosorbent assay. Results : Compared with the control group, the serum NET components were significantly increased in the patients 1 week after ROSC (all P < 0.05). These components were significantly higher in the nonsurvivor group than in the survivor group (all P < 0.05). Spearman correlational analysis revealed that the components were positively correlated with Acute Physiology and Chronic Health Evaluation II scores (both P < 0.05). Binary logistic regression analysis indicated that serum cfDNA, CitH3, and nucleosomes on days 1 and 3 after ROSC were independent predictors of 28-day all-cause mortality. Furthermore, these parameters on day 1 after ROSC had the biggest areas under the receiver operating characteristic curves (0.876, 0.862, and 0.861, respectively). Conclusions: Elevated serum levels of cfDNA, CitH3, myeloperoxidase, neutrophil elastase, and nucleosomes were positively correlated with disease severity after ROSC. However, only serum CitH3, cfDNA, and nucleosomes on day 1 after ROSC showed a good predictive value for 28-day all-cause mortality.


Assuntos
Ácidos Nucleicos Livres , Armadilhas Extracelulares , Parada Cardíaca , Humanos , Biomarcadores , Armadilhas Extracelulares/metabolismo , Histonas , Elastase de Leucócito/metabolismo , Neutrófilos/metabolismo , Nucleossomos , Peroxidase , Projetos Piloto
9.
Chembiochem ; 24(22): e202300346, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37642535

RESUMO

Human neutrophil elastase (HNE) is an enzyme that plays a key role in the body's inflammatory response. It has been linked to several diseases such as chronic obstructive pulmonary disease (COPD), emphysema, and cystic fibrosis. As potential treatments for these diseases, HNE inhibitors are of great interest. Metabolites derived from plants, particularly terpenoids such as ß-caryophyllene found in black pepper and other plants, and geraniol present in several essential oils, are recognized as significant sources of inhibitors for HNE. Because of their ability to inhibit HNE, terpenoids are considered promising candidates for developing novel therapies to treat inflammatory conditions such as COPD and emphysema. Furthermore, nature can serve as an excellent designer, and it may offer a safer drug candidate for inhibiting HNE production and activity in the future. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses were searched to get relevant and up-to-date literature on terpenoids as human neutrophil elastase inhibitors. This review focuses on the isolation, chemical diversity, and inhibition of human neutrophil elastase (HNE) of various terpenoids reported from natural sources up to 2022. A total of 251 compounds from various terpenoids classes have been reported. Further, it also provides a summary of HNE inhibitors and includes a thorough discussion on the structure-activity relationship.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Humanos , Elastase de Leucócito/metabolismo , Elastase de Leucócito/uso terapêutico , Terpenos/farmacologia , Terpenos/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Enfisema/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
10.
ChemMedChem ; 18(18): e202300218, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37424408

RESUMO

The zymogens of the neutrophil serine proteases elastase, proteinase 3, and cathepsin G are converted proteolytically into their pro-inflammatory active forms by the action of cathepsin C. The inhibition of this cysteine protease therefore is an interesting therapeutic approach for the treatment of inflammatory disorders with a high neutrophil burden such as COPD. Based on E-64c-hydrazide as lead structure, we have recently developed a covalently acting cathepsin C inhibitor using a n-butyl residue attached at the amine nitrogen of the hydrazide moiety to efficiently address the deep hydrophobic S2 pocket. To further optimize the affinity and selectivity profile of this inhibitor, the S1'-S2' area was now investigated by a combinatorial approach, showing that Nle-tryptamide is a ligand superior to the initially used Leu-isoamylamide. Using the neutrophil precursor line U937 as a cell culture model, this optimized inhibitor blocks the intracellular cathepsin C activity and thereby suppresses the activation of neutrophil elastase.


Assuntos
Catepsina C , Hidrazinas , Catepsina C/metabolismo , Hidrazinas/farmacologia , Elastase de Leucócito/metabolismo , Serina Proteases , Leucina
11.
J Biol Chem ; 299(7): 104878, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37269950

RESUMO

Extracellular adherence protein domain (EAP) proteins are high-affinity, selective inhibitors of neutrophil serine proteases (NSP), including cathepsin-G (CG) and neutrophil elastase (NE). Most Staphylococcus aureus isolates encode for two EAPs, EapH1 and EapH2, that contain a single functional domain and share 43% identity with one another. Although structure/function investigations from our group have shown that EapH1 uses a globally similar binding mode to inhibit CG and NE, NSP inhibition by EapH2 is incompletely understood due to a lack of NSP/EapH2 cocrystal structures. To address this limitation, we further studied NSP inhibition by EapH2 in comparison with EapH1. Like its effects on NE, we found that EapH2 is a reversible, time-dependent, and low nanomolar affinity inhibitor of CG. We characterized an EapH2 mutant which suggested that the CG binding mode of EapH2 is comparable to EapH1. To test this directly, we used NMR chemical shift perturbation to study EapH1 and EapH2 binding to CG and NE in solution. Although we found that overlapping regions of EapH1 and EapH2 were involved in CG binding, we found that altogether distinct regions of EapH1 and EapH2 experienced changes upon binding to NE. An important implication of this observation is that EapH2 might be capable of binding and inhibiting CG and NE simultaneously. We confirmed this unexpected feature by solving crystal structures of the CG/EapH2/NE complex and demonstrating their functional relevance through enzyme inhibition assays. Together, our work defines a new mechanism of simultaneous inhibition of two serine proteases by a single EAP protein.


Assuntos
Proteínas de Bactérias , Evasão da Resposta Imune , Serina Proteases , Staphylococcus aureus , Proteínas de Bactérias/metabolismo , Catepsina G , Elastase de Leucócito/metabolismo , Neutrófilos/metabolismo , Serina Proteases/genética , Staphylococcus aureus/metabolismo
12.
Biomater Adv ; 151: 213488, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37285725

RESUMO

In chronic wound (CW) scenarios, Staphylococcus aureus-induced infections are very prevalent. This leads to abnormal inflammatory processes, in which proteolytic enzymes, such as human neutrophil elastase (HNE), become highly expressed. Alanine-Alanine-Proline-Valine (AAPV) is an antimicrobial tetrapeptide capable of suppressing the HNE activity, restoring its expression to standard rates. Here, we proposed the incorporation of the peptide AAPV within an innovative co-axial drug delivery system, in which the peptide liberation was controlled by N-carboxymethyl chitosan (NCMC) solubilization, a pH-sensitive antimicrobial polymer effective against Staphylococcus aureus. The microfibers' core was composed of polycaprolactone (PCL), a mechanically resilient polymer, and AAPV, while the shell was made of the highly hydrated and absorbent sodium alginate (SA) and NCMC, responsive to neutral-basic pH (characteristic of CW). NCMC was loaded at twice its minimum bactericidal concentration (6.144 mg/mL) against S. aureus, while AAPV was loaded at its maximum inhibitory concentration against HNE (50 µg/mL), and the production of fibers with a core-shell structure, in which all components could be detected (directly or indirectly), was confirmed. Core-shell fibers were characterized as flexible and mechanically resilient, and structurally stable after 28-days of immersion in physiological-like environments. Time-kill kinetics evaluations revealed the effective action of NCMC against S. aureus, while elastase inhibitory activity examinations proved the ability of AAPV to reduce HNE levels. Cell biology testing confirmed the safety of the engineered fiber system for human tissue contact, with fibroblast-like cells and human keratinocytes maintaining their morphology while in contact with the produced fibers. Data confirmed the engineered drug delivery platform as potentially effective for applications in CW care.


Assuntos
Quitosana , Infecções Estafilocócicas , Humanos , Alginatos/farmacologia , Quitosana/farmacologia , Quitosana/química , Elastase de Leucócito/metabolismo , Elastase de Leucócito/farmacologia , Peptídeos/farmacologia , Polímeros/farmacologia , Staphylococcus aureus/metabolismo , Valina/farmacologia , Ferimentos e Lesões/complicações , Ferimentos e Lesões/microbiologia , Ferimentos e Lesões/terapia , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia
13.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175553

RESUMO

Intense neutrophil infiltration into the liver is a characteristic of acetaminophen-induced acute liver injury. Neutrophil elastase is released by neutrophils during inflammation. To elucidate the involvement of neutrophil elastase in acetaminophen-induced liver injury, we investigated the efficacy of a potent and specific neutrophil elastase inhibitor, sivelestat, in mice with acetaminophen-induced acute liver injury. Intraperitoneal administration of 750 mg/kg of acetaminophen caused severe liver damage, such as elevated serum transaminase levels, centrilobular hepatic necrosis, and neutrophil infiltration, with approximately 50% mortality in BALB/c mice within 48 h of administration. However, in mice treated with sivelestat 30 min after the acetaminophen challenge, all mice survived, with reduced serum transaminase elevation and diminished hepatic necrosis. In addition, mice treated with sivelestat had reduced NOS-II expression and hepatic neutrophil infiltration after the acetaminophen challenge. Furthermore, treatment with sivelestat at 3 h after the acetaminophen challenge significantly improved survival. These findings indicate a new clinical application for sivelestat in the treatment of acetaminophen-induced liver failure through mechanisms involving the regulation of neutrophil migration and NO production.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hepatopatias , Camundongos , Animais , Acetaminofen/toxicidade , Elastase de Leucócito/metabolismo , Camundongos Endogâmicos BALB C , Transaminases , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Necrose
14.
Biomol NMR Assign ; 17(1): 129-134, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37160842

RESUMO

The S. aureus extracellular adherence protein (Eap) and its homologs, EapH1 and EapH2, serve roles in evasion of the human innate immune system. EapH1 binds with high-affinity and inhibits the neutrophil azurophilic granule proteases neutrophil elastase, cathepsin-G and proteinase-3. Previous structural studies using X-ray crystallography have shown that EapH1 binds to neutrophil elastase and cathepsin-G using a globally similar binding mode. However, whether the same holds true in solution is unknown and whether the inhibitor experiences dynamic changes following binding remains uncertain. To facilitate solution-phase structural and biochemical studies of EapH1 and its complexes with neutrophil granule proteases, we have characterized EapH1 by multidimensional NMR spectroscopy. Here we report a total of 100% of the non-proline backbone resonance assignments of EapH1 with BMRB accession number 50,304.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Inibidores de Serino Proteinase , Humanos , Inibidores de Serino Proteinase/química , Inibidores de Serino Proteinase/metabolismo , Neutrófilos/metabolismo , Elastase de Leucócito/metabolismo , Staphylococcus aureus/química , Staphylococcus aureus Resistente à Meticilina/metabolismo , Ressonância Magnética Nuclear Biomolecular
15.
Comput Biol Med ; 161: 107004, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37230015

RESUMO

BACKGROUND: Human neutrophil elastase (HNE) is a key driver of systemic and cardiopulmonary inflammation. Recent studies have established the existence of a pathologically active auto-processed form of HNE with reduced binding affinity against small molecule inhibitors. METHOD: AutoDock Vina v1.2.0 and Cresset Forge v10 software were used to develop a 3D-QSAR model for a series of 47 DHPI inhibitors. Molecular Dynamics (MD) simulations were carried out using AMBER v18 to study the structure and dynamics of sc (single-chain HNE) and tcHNE (two-chain HNE). MMPBSA binding free energies of the previously reported clinical candidate BAY 85-8501 and the highly active BAY-8040 were calculated with sc and tcHNE. RESULTS: The DHPI inhibitors occupy the S1 and S2 subsites of scHNE. The robust 3D-QSAR model showed acceptable predictive and descriptive capability with regression coefficient of r2 = 0.995 and cross-validation regression coefficient q2 = 0.579 for the training set. The key descriptors of shape, hydrophobics and electrostatics were mapped to the inhibitory activity. In auto-processed tcHNE, the S1 subsite undergoes widening and disruption. All the DHPI inhibitors docked with the broadened S1'-S2' subsites of tcHNE with lower AutoDock binding affinities. The MMPBSA binding free energy of BAY-8040 with tcHNE reduced in comparison with scHNE while the clinical candidate BAY 85-8501 dissociated during MD. Thus, BAY-8040 may have lower inhibitory activity against tcHNE whereas the clinical candidate BAY 85-8501 is likely to be inactive. CONCLUSION: SAR insights gained from this study will aid the future development of inhibitors active against both forms of HNE.


Assuntos
Elastase de Leucócito , Pirimidinonas , Humanos , Elastase de Leucócito/química , Elastase de Leucócito/metabolismo , Sulfonas , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Simulação de Acoplamento Molecular
16.
J Biol Chem ; 299(6): 104820, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37187291

RESUMO

Patients with cystic fibrosis (CF) have decreased severity of severe acute respiratory syndrome-like coronavirus-2 (SARS-CoV-2) infections, but the underlying cause is unknown. Patients with CF have high levels of neutrophil elastase (NE) in the airway. We examined whether respiratory epithelial angiotensin-converting enzyme 2 (ACE-2), the receptor for the SARS-CoV-2 spike protein, is a proteolytic target of NE. Soluble ACE-2 levels were quantified by ELISA in airway secretions and serum from patients with and without CF, the association between soluble ACE-2 and NE activity levels was evaluated in CF sputum. We determined that NE activity was directly correlated with increased ACE-2 in CF sputum. Additionally, primary human bronchial epithelial (HBE) cells, exposed to NE or control vehicle, were evaluated by Western analysis for the release of cleaved ACE-2 ectodomain fragment into conditioned media, flow cytometry for the loss of cell surface ACE-2, its impact on SARS-CoV-2 spike protein binding. We found that NE treatment released ACE-2 ectodomain fragment from HBE and decreased spike protein binding to HBE. Furthermore, we performed NE treatment of recombinant ACE-2-Fc-tagged protein in vitro to assess whether NE was sufficient to cleave recombinant ACE-2-Fc protein. Proteomic analysis identified specific NE cleavage sites in the ACE-2 ectodomain that would result in loss of the putative N-terminal spike-binding domain. Collectively, data support that NE plays a disruptive role in SARS-CoV-2 infection by catalyzing ACE-2 ectodomain shedding from the airway epithelia. This mechanism may reduce SARS-CoV-2 virus binding to respiratory epithelial cells and decrease the severity of COVID19 infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Fibrose Cística , Elastase de Leucócito , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Fibrose Cística/metabolismo , Elastase de Leucócito/metabolismo , Ligação Proteica , Proteômica , Mucosa Respiratória/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
17.
Mol Immunol ; 158: 1-9, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37254294

RESUMO

Studies have investigated the relationship between diesel exhaust (DE) exposure and lung health, highlighting the potential for DE to induce pulmonary inflammation and oxidative stress. However, the resolution of inflammation upon withdrawal of DE exposure needs further investigation. Therefore, resolution of diesel exhaust-induced lung damage was studied in the murine model. Mice (6 weeks) were divided into three groups. Group 1 (control) mice were exposed to filtered air, Group 2 (DE) mice were exposed to DE (5.1 ± 0.7 mg/m3) & Group 3 (DE-FA) mice were exposed to DE followed by filtered air exposure. Airway hyper-responsiveness was recorded after 24 h of the last exposure. BALF and lung samples were collected for cytokine estimation, immunobiological assays, and western blot analysis. DE exposure showed an increase in lung resistance thereby causing alteration in lung function parameters (p < 0.05) which was restored in the DE-FA group. BALF analysis showed a significant increase in total cell count and protein content in DE with no resolution in DE-FA groups (p < 0.05). Lung histology showed no reduction in the bronchiolar thickness and damage in the DE-FA group suggesting irreversible lung damage (p < 0.05). The significant increase in inflammatory cytokine levels, and collagen deposition showed persistent inflammatory phase and lung damage in the DE-FA group(p < 0.05). ZO-1 was significantly decreased in both test groups indicating disintegrated lung epithelium where in claudin-5 expression showed increased lung permeability. A significant increase in neutrophil elastase activity and decreased expression of, Elafin, resulted in lung epithelial damage in the DE-FA group. Lung injury marker alpha1-antitrypsin was increased in DE-FA groups indicating an immune defense mechanism against neutrophil elastase. The study showed that DE exposure causes persistent lung damage via neutrophil elastase-associated disruption of the epithelial barrier integrity and membrane dysfunction.


Assuntos
Elastase de Leucócito , Emissões de Veículos , Camundongos , Animais , Emissões de Veículos/toxicidade , Elastase de Leucócito/metabolismo , Modelos Animais de Doenças , Pulmão , Citocinas/metabolismo
18.
J Vis Exp ; (195)2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37246854

RESUMO

Certain stimuli, such as microorganisms, cause neutrophils to release neutrophil extracellular traps (NETs), which are basically web-like structures composed of DNA with granule proteins, such as myeloperoxidase (MPO) and neutrophil elastase (NE), and cytoplasmic and cytoskeletal proteins. Although interest in NETs has increased recently, no sensitive, reliable assay method is available for measuring NETs in clinical settings. This article describes a modified sandwich enzyme-linked immunosorbent assay to quantitatively measure two components of circulating NETs, MPO-DNA and NE-DNA complexes, which are specific components of NETs and are released into the extracellular space as breakdown products of NETs. The assay uses specific monoclonal antibodies for MPO or NE as the capture antibodies and a DNA-specific detection antibody. MPO or NE binds to one site of the capture antibody during the initial incubation of samples containing MPO-DNA or NE-DNA complexes. This assay shows good linearity and high inter-assay and intra-assay precision. We used it in 16 patients with COVID-19 with accompanying acute respiratory distress syndrome and found that the plasma concentrations of MPO-DNA and NE-DNA were significantly higher than in the plasma obtained from healthy controls. This detection assay is a reliable, highly sensitive, and useful method for investigating the characteristics of NETs in human plasma and culture supernatants.


Assuntos
COVID-19 , Armadilhas Extracelulares , Humanos , Armadilhas Extracelulares/metabolismo , Elastase de Leucócito/metabolismo , Peroxidase , Neutrófilos , Ensaio de Imunoadsorção Enzimática , DNA/metabolismo
19.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L694-L699, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37014068

RESUMO

Chronic obstructive pulmonary disease (COPD) is characterized by lung extracellular matrix (ECM) remodeling that contributes to obstruction. This is driven, in part by extracellular vesicles (EVs) from activated neutrophils (PMNs), which express on their surface an α-1 antitrypsin (AAT) insensitive form of neutrophil elastase (NE). These EVs are predicted to bind to collagen fibers via Mac-1 integrins, during which time NE can enzymatically degrade the collagen. Protamine sulfate (PS), a cationic compound used safely for decades in humans, has been shown, in vitro, to dissociate this NE from the EV surface, rendering it AAT-sensitive. In addition, a nonapeptide inhibitor, MP-9, has been shown to prevent EV association with collagen. We sought to test whether PS, MP-9, or a combination of the two could effectively prevent NE+ EV-driven ECM remodeling in an animal COPD model. EVs were preincubated with PBS, protamine sulfate (25 µM), MP-9 (50 µM), or a combination of PS and MP-9. These were delivered intratracheally to anesthetized female 10- to 12-wk-old A/J mice for a 7-day time period. One group of mice was euthanized and lungs sectioned for morphometry, and the other group was used for live pulmonary function testing. The effect of alveolar destruction by activated neutrophil EVs was abrogated by pretreatment with PS or MP-9. However, in pulmonary function tests, only the PS groups (and combined PS/MP-9 groups) returned pulmonary function to near-control levels. These data presented here offer an insight into the effective use of PS in therapeutic setting for EV-derived alveolar damage.NEW & NOTEWORTHY Protamine sulfate facilitates the removal of neutrophil elastase (NE) from the surface of extracellular vesicles from activated neutrophils. This "free" NE is no longer protected from inhibition by its endogenous anti-protease, α-1-anti-trypsin. This function of protamine sulfate highlights it as a potential therapeutic strategy for COPD, which may attenuate the disease process.


Assuntos
Enfisema , Vesículas Extracelulares , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Feminino , Camundongos , Animais , Elastase de Leucócito/metabolismo , Neutrófilos/metabolismo , Enfisema Pulmonar/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Colágeno/metabolismo , Vesículas Extracelulares/metabolismo
20.
J Biol Chem ; 299(6): 104760, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37119853

RESUMO

Pneumococcus is the main cause of bacterial pneumonia. Pneumococcal infection has been shown to cause elastase, an intracellular host defense factor, to leak from neutrophils. However, when neutrophil elastase (NE) leaks extracellularly, it can degrade host cell surface proteins such as epidermal growth factor receptor (EGFR) and potentially disrupt the alveolar epithelial barrier. In this study, we hypothesized that NE degrades the extracellular domain (ECD) of EGFR in alveolar epithelial cells and inhibits alveolar epithelial repair. Using SDS-PAGE, we showed that NE degraded the recombinant EGFR ECD and its ligand epidermal growth factor, and that the degradation of these proteins was counteracted by NE inhibitors. Furthermore, we confirmed the degradation by NE of EGFR expressed in alveolar epithelial cells in vitro. We showed that intracellular uptake of epidermal growth factor and EGFR signaling was downregulated in alveolar epithelial cells exposed to NE and found that cell proliferation was inhibited in these cells These negative effects of NE on cell proliferation were abolished by NE inhibitors. Finally, we confirmed the degradation of EGFR by NE in vivo. Fragments of EGFR ECD were detected in bronchoalveolar lavage fluid from pneumococcal pneumonia mice, and the percentage of cells positive for a cell proliferation marker Ki67 in lung tissue was reduced. In contrast, administration of an NE inhibitor decreased EGFR fragments in bronchoalveolar lavage fluid and increased the percentage of Ki67-positive cells. These findings suggest that degradation of EGFR by NE could inhibit the repair of alveolar epithelium and cause severe pneumonia.


Assuntos
Receptores ErbB , Elastase de Leucócito , Pneumonia Pneumocócica , Animais , Camundongos , Líquido da Lavagem Broncoalveolar , Células Epiteliais/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Antígeno Ki-67/metabolismo , Elastase de Leucócito/metabolismo , Pulmão/metabolismo , Pneumonia Pneumocócica/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...